近日齊魯醫(yī)藥學(xué)院發(fā)布2023年普通高等教育??粕究茖I(yè)綜合測(cè)試考試大綱,以下為《高等數(shù)學(xué) II》科目考試大綱,備考生一起來(lái)看看吧~
一、考試題型和分值
( 一) 考試題型:單項(xiàng)選擇題、多項(xiàng)選擇題等
(二) 總分:100 分
二、參考教材
《高等數(shù)學(xué)》上下冊(cè),高等教育出版社,第 7 版,主編 同濟(jì)大學(xué)數(shù)學(xué)系
三、考試范圍
(一) 函數(shù)、極限與連續(xù) 1.函數(shù)
函數(shù)的定義域,函數(shù)表達(dá)式,函數(shù)值。
函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
分段函數(shù)、反函數(shù)、復(fù)合函數(shù)、成本函數(shù)、收益函數(shù)、利潤(rùn)函數(shù)、需 求函數(shù)和供給函數(shù)
函數(shù)的復(fù)合運(yùn)算,初等函數(shù)的性質(zhì)及圖形。
要求:
(1) 理解函數(shù)的概念,會(huì)求函數(shù)的定義域、表達(dá)式及函數(shù)值,會(huì)建 立應(yīng)用問(wèn)題的函數(shù)關(guān)系。
(2) 掌握函數(shù)的有界性、單調(diào)性、周期性和奇偶性。
(3) 理解分段函數(shù)、反函數(shù)和復(fù)合函數(shù)的概念。
(4) 掌握函數(shù)的四則運(yùn)算與復(fù)合運(yùn)算。
(5) 掌握基本初等函數(shù)的性質(zhì)及圖形,理解初等函數(shù)的概念。
(6) 理解經(jīng)濟(jì)學(xué)中的幾種常見(jiàn)函數(shù) (成本函數(shù)、收益函數(shù)、利潤(rùn)函 數(shù)、需求函數(shù)和供給函數(shù)) 。
2.極限
數(shù)列極限和函數(shù)極限的概念,兩個(gè)重要極限,無(wú)窮小量、無(wú)窮大量的 概念。
數(shù)列極限和函數(shù)極限的性質(zhì)、極限的運(yùn)算法則。
無(wú)窮小量的性質(zhì),無(wú)窮小量階的比較。
要求:
(1) 理解數(shù)列極限和函數(shù)極限(包括左極限和右極限)的概念。理解 函數(shù)極限存在與左極限、右極限存在之間的關(guān)系。
(2) 理解數(shù)列極限和函數(shù)極限的性質(zhì)。熟練掌握數(shù)列極限和函數(shù)極 限的運(yùn)算法則。
(3) 熟練掌握兩個(gè)重要極限,并會(huì)用它們求極限。
(4) 理解無(wú)窮小量、無(wú)窮大量的概念,掌握無(wú)窮小量的性質(zhì)、無(wú)窮 小量與無(wú)窮大量的關(guān)系。會(huì)比較無(wú)窮小量的階(高階、低階、同階和等價(jià))。 會(huì)用等價(jià)無(wú)窮小量求極限。
3.連續(xù)
連續(xù)性的概念,間斷點(diǎn)的定義及分類。
閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。
要求:
(1) 理解函數(shù)連續(xù)性 (包括左連續(xù)和右連續(xù)) 的概念,掌握函數(shù) 連續(xù)與左連續(xù)、右連續(xù)之間的關(guān)系。會(huì)求函數(shù)的間斷點(diǎn)并判斷其類型。
(2) 掌握連續(xù)函數(shù)的四則運(yùn)算和復(fù)合運(yùn)算。理解初等函數(shù)在其定 義區(qū)間內(nèi)的連續(xù)性。
(3) 會(huì)利用連續(xù)性求極限。
(4) 掌握閉區(qū)間上連續(xù)函數(shù)的性質(zhì) (有界性定理、最大值和最小 值定理、介值定理、零點(diǎn)定理) ,并會(huì)應(yīng)用這些性質(zhì)解決相關(guān)問(wèn)題。
(二) 一元函數(shù)微分學(xué)
1.導(dǎo)數(shù)與微分
導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義,高階導(dǎo)數(shù)的概念,微分的概念,隱函 數(shù)求導(dǎo)。
導(dǎo)數(shù)的四則運(yùn)算法則,復(fù)合函數(shù)的求導(dǎo)法則,基本初等函數(shù)的導(dǎo)數(shù)公
式,導(dǎo)數(shù)與微分的關(guān)系。
要求:
(1) 理解導(dǎo)數(shù)的概念及幾何意義,會(huì)用定義求函數(shù)在一點(diǎn)處的導(dǎo)數(shù) (包括左導(dǎo)數(shù)和右導(dǎo)數(shù)) 。會(huì)求平面曲線的切線方程和法線方程。理解函 數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系。
(2) 熟練掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,熟練掌 握基本初等函數(shù)的導(dǎo)數(shù)公式。
(3) 掌握隱函數(shù)求導(dǎo)法、對(duì)數(shù)求導(dǎo)法。
(4) 理解高階導(dǎo)數(shù)的概念,會(huì)求函數(shù)的高階導(dǎo)數(shù)。
(5) 理解微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,掌握微分運(yùn)算法則, 會(huì)求函數(shù)的一階微分。
2.中值定理及導(dǎo)數(shù)的應(yīng)用
羅爾定理、拉格朗日中值定理,洛必達(dá)法則。
駐點(diǎn)、極值點(diǎn)和極值的概念,曲線的凹凸性、拐點(diǎn)以及漸近線的概念, 邊際函數(shù)、彈性函數(shù)。
導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和凹凸性,求極值、最值。
要求:
(1) 理解羅爾定理、拉格朗日中值定理。會(huì)用羅爾定理和拉格朗日 中值定理解決相關(guān)問(wèn)題。
(2) 熟練掌握洛必達(dá)法則,會(huì)用洛必達(dá)法則求型未定式的極限。
(3) 理解駐點(diǎn)、極值點(diǎn)和極值的概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào) 性和求函數(shù)極值的方法,會(huì)利用函數(shù)的單調(diào)性證明不等式,掌握函數(shù)最大 值和最小值的求法及其應(yīng)用。
(4) 會(huì)用導(dǎo)數(shù)判斷曲線的凹凸性,會(huì)求曲線的拐點(diǎn)以及水平漸近線 與垂直漸近線。
(5) 理解邊際函數(shù)、彈性函數(shù)的概念及其實(shí)際意義,會(huì)求解簡(jiǎn)單的 應(yīng)用問(wèn)題。
(三) 一元函數(shù)積分學(xué)
1.不定積分
原函數(shù)的定義,不定積分的概念,不定積分的基本公式。 換元積分法、分部積分法。
要求:
(1) 理解原函數(shù)與不定積分的概念,了解原函數(shù)存在定理, 掌握不
定積分的性質(zhì)。
(2) 熟練掌握不定積分的基本公式。
(3) 熟練掌握不定積分的換元積分法和分部積分法。
(4) 掌握簡(jiǎn)單有理函數(shù)的不定積分的求法。
2.定積分
定積分的概念,牛頓-萊布尼茨公式。
定積分的換元積分法與分部積分法。
定積分的應(yīng)用。
要求:
(1) 理解定積分的概念及幾何意義,了解可積的條件。
(2) 掌握定積分的性質(zhì)及其應(yīng)用。
(3)理解積分上限的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓-萊布尼茨公式。
(4) 熟練掌握定積分的換元積分法與分部積分法。
(5) 會(huì)用定積分表達(dá)和計(jì)算平面圖形的面積、旋轉(zhuǎn)體的體積。
(6) 會(huì)利用定積分求解經(jīng)濟(jì)分析中的簡(jiǎn)單應(yīng)用問(wèn)題。
(四) 多元函數(shù)微積分學(xué) 1.多元函數(shù)微分學(xué)
二元函數(shù)的概念,二元函數(shù)的極限與連續(xù)的概念,二元函數(shù)偏導(dǎo)數(shù)和 全微分。
隱函數(shù)的一階偏導(dǎo)數(shù)的計(jì)算方法。
二元函數(shù)的極值。
要求:
(1) 理解二元函數(shù)的概念、幾何意義及二元函數(shù)的極限與連續(xù)的概 念,會(huì)求二元函數(shù)的定義域。
(2) 理解二元函數(shù)偏導(dǎo)數(shù)和全微分的概念。掌握二元函數(shù)的一階、 二階偏導(dǎo)數(shù)的求法,會(huì)求二元函數(shù)的全微分。
(3) 掌握復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù)的求法。
(4) 掌握由方程F (x, y , z ) = 0 所確定的隱函數(shù) z = f (x, y ) 的一階偏導(dǎo)數(shù)的計(jì)算方法。
(5) 會(huì)求二元函數(shù)的無(wú)條件極值。
2.二重積分
二重積分的概念、性質(zhì)。
二重積分的計(jì)算。
要求:
(1) 理解二重積分的概念、性質(zhì)及其幾何意義。
(2) 掌握二重積分在直角坐標(biāo)系下的計(jì)算方法。
(五) 常微分方程 1.微分方程
微分方程的定義,微分方程的階、解、通解、初始條件和特解。
可分離變量微分方程,一階線性微分方程,二階常系數(shù)齊次線性微分 方程。
要求:
(1) 理解微分方程的定義,理解微分方程的階、解、通解、初始條 件和特解等概念。
(2) 掌握可分離變量微分方程的解法。
(3) 掌握一階線性微分方程的解法。
(4) 掌握二階常系數(shù)齊次線性微分方程的解法。
研究考試大綱,對(duì)大綱中的考點(diǎn)及相關(guān)要求進(jìn)行認(rèn)真研究,是應(yīng)考的關(guān)鍵。正在備考專升本的同學(xué),關(guān)注山東好老師升學(xué)幫網(wǎng)站可以了解更多專升本的考試信息。如果在學(xué)習(xí)上有困難,自制力差,可以在下方留下你的聯(lián)系方式,我們的老師會(huì)針對(duì)你的學(xué)習(xí)情況給出建議。